logo
Западно-Сибирская тайга

2.1 Биологический круговорот

По Н.И. Базилевич, биомасса в тайге не намного уступает влажным тропикам и широколиственным лесам. В южной тайге Б превышает 3000 ц/га и только в северной понижается до 500--1000 ц/га. Более половины биомассы представлено древесиной, состоящей из клетчатки (около 50%), лигнина (20--30%), гемицеллюлозы (более 10%), в меньшей степени из смол, дубильных веществ, других органических соединений. Специфичны фитонциды, создающие аромат хвойного леса.

Число видов высших растений приблизительно вдвое меньше, чем в широколиственных лесах (около 1000 для крупных флористических районов). Зеленая часть обычно не менее 3% от биомассы (часто 5--7). По этому показателю тайга ближе к влажным тропикам (8%), чем к широколиственным лесам (1%).

Ежегодная продукция П в южной тайге почти такая же, как в широколиственных лесах (85 ц/га против 90 в дубравах), в северной тайге -- вдвое меньше (40--60 ц/га). Однако по величине К -- соотношению логарифмов П и Б северная и южная тайга близки (0,53--0,55) и отличаются от широколиственных лесов (0,58--0,60). Растительный опад в южной тайге меньше, чем в дубравах (55 ц/га против 65), еще меньше он в северной тайге -- 35 ц/га. Ряды биологического поглощения для ельников европейской России почти такие же, как и для широколиственных лесов.

Как и в широколиственных лесах, подобный характер рядов определяет возможность биогенного накопления в почвах S, Р, Мn, К, Са, Mg, многих редких элементов.

Для тайги характерна низкая зольность прироста: в северной тайге ниже 1,5%, в средней и южной -- 1,6--2,5% (в широколиственных лесах 2,6--3,5%). Таким образом, хвойные деревья беднее золой, чем лиственные. Особенно важны различия зольности хвои и листьев, так как хвоя играет ведущую роль в опаде деревьев (более 50%). Зольность хвои -- 2--3,5%, листьев широколиственных пород -- 5--8%. Еще важнее различия в качественном составе золы: в хвое большую роль играет SiO2 и меньшую Са. Клеточный сок хвои ели, сосны и лиственницы содержит свободные органические кислоты, его рН 4,5--6,5; рН таежных трав также нередко кислый (кислица и другие травы). Следовательно, уже в растениях создается характерная геохимическая особенность таежного ландшафта -- кислая среда.

Зоомасса в тайге очень мала -- n ц/га и в южной тайге составляет лишь 0,01% Б. Характерно изменение величины зоомассы по сезонам и в разные годы, в связи с сезонностью размножения, кочевками, зимним оцепенением. Зимой активная часть населения составляет 0,1 летнего обилия. В отдельные годы из-за неурожая семян резко сокращается число семяноедов (например, белок) и наоборот. Возможны и массовые миграции.

С опадом в тайге ежегодно возвращается значительно меньше водных мигрантов, чем в широколиственных лесах. Если в дубравах этот показатель близок к 200 кг/га, в бучинах -- 270, то в ельниках южной тайги -- 85, в северной тайге -- 52 кг/га. По Базилевич, для тайги характерен азотный тип химизма бика (N>Ca), в то время как в широколиственных лесах -- кальциевый (Ca>N). В холодной тайге разложение органических веществ протекает медленнее, чем в широколиственных лесах, микроорганизмы работают не столь энергично, время их деятельности в году короче, некоторые группы бактерий отсутствуют. Масса подстилки более чем в 10 раз превышает опад зеленой части. Этим тайга резко отличается от других типов лесных ландшафтов.

"Подстилочный индекс" в тайге равен 6--20. Он свидетельствует о заторможенности бика (во влажных тропиках 0,1--0,2 -- бик весьма интенсивный).

В растительном опаде елового леса эквиваленты кислотных органических соединений в десятки раз превышают эквиваленты катионов золы и N, дающих основания. Низкое содержание сильных оснований (Са, Mg, Na, К) в золе при отсутствии их подвижных форм в горных породах обуславливает кислый характер почвенных растворов: часть органических кислот существует в свободной форме, обеспечивая кислую реакцию лесной подстилки и верхних горизонтов почвы (рН 3,5--4,5).

В.В. Пономарева выделила три направления в разложении растительных остатков: минерализация (образование СО2 и других полностью окисленных соединений), собственно гумификация и образование водорастворимых органических соединений. В тайге минерализация и гумификация ослаблены (в отличие от степей), энергично идет образование фульвокислот (отношение гуминовые кислоты/фульвокислоты = 0,6--0,8). Нейтрализация фульвокислот происходит, главным образом, за счет Fe и А1 почвенных минералов. Так, в почвах возникают фульваты Fe и А1, создается возможность кислого выщелачивания, которая реализуется на всех бескарбонатных породах, где формируются ландшафты кислого (Н) и кислого глеевого (H-Fe) классов. По Д.С. Орлову, запасы гумуса в дерново-подзолистых почвах южной тайги приблизительно вдвое меньше, чем в широколиственных лесах (70--100 и 100--270 т/га в полуметровом слое). Часть органических веществ входит в состав глинистых минералов.

Итак, главное геохимическое отличие бика тайги от бика широколиственных лесов состоит в специфическом консервативном соотношении Б и П, в меньшей скорости разложения органических веществ, меньшем количестве водных мигрантов, вовлекаемых в бик и поступающих с опадом, более кислом характере продуктов разложения, меньшей роли биокосной отрицательной обратной связи. По ряду особенностей бика таежные ландшафты ближе к влажным тропикам, чем к широколиственным лесам (табл. 7.2).

Хвойные леса появились на Земле в середине пермского периода около 250 миллионов лет назад. По Н.М. Страхову, это была хвойно-гингковая тайга. Ее бик благоприятствовал кислой миграции и сильному выщелачиванию почв. В современной кайнофитной тайге сохранились многие черты этой мезофитной влажной тропической тайги. Интенсивность кислого выщелачивания в обоих случаях близка, различие заключается в емкости процесса. Если во влажном и теплом климате мезофита кислое выщелачивание распространялось на всю почву и кору выветривания, то в холодном климате современной тайги эти процессы охватывают лишь верхние десятки сантиметров почвенного профиля -- горизонты А1 и А2 (обычно менее 0,5 м, а в северной тайге местами даже менее 0,1 м).