logo
RAZDEL_II

5.3. Происхождение и эволюция атмосферы

Состав атмосферы не всегда был таким, как сейчас. Предполагают, что первичная атмосфера состояла из водорода и гелия, которые были самыми распространенными газами в Космосе и входили в состав протопланетного газово-пылевого облака.

Результаты исследований М. И. Будыко с количественными оценками изменения массы кислорода и углекислого газа на протяжении жизни Земли дают основание считать, что историю вторичной атмосферы можно разделить на два главных этапа: бескислородной атмосферы и кислородной атмосферы – на рубеже примерно 2 млрд лет тому назад.

Первый этап начался после завершения образования планеты, когда началось разделение первичного земного вещества на тяжелые (преимущественно железо) и относительно легкие (в основном кремний) элементы. Первые образовали земное ядро, вторые – мантию. Эта реакция сопровождалась выделением тепла, в результате чего стала происходить дегазация мантии – из нее стали выделяться различные газы. Сила тяготения Земли оказалась способной удержать их возле планеты, где они стали скапливаться и образовали атмосферу Земли.

Состав этой начальной атмосферы существенно отличался от современного состава воздуха (табл. 1)

Таблица 1

Состав воздуха при образовании атмосферы Земли в сравнении с современным составом атмосферы (по В. А. Вронскому и Г. В. Войткевичу)

Газ

Его состав

Состав атмосферы Земли

при образовании

современный

Азот

N2

1,5

78

Кислород

О2

0

21

Озон

О3

10-5

Углекислый газ

СО2

98

0,03

Оксид углерода

СО

10-4

Водяной пар

Н2О

0,4

0,1

Аргон

Аг

0,19

0,93

Кроме этих газов, в атмосфере присутствовали метан (СН4), аммиак (NH3), водород (Н2) и др.

Характерной чертой этого этапа было убывание углекислого газа и накопление азота, который к концу эпохи бескислородной атмосферы стал основным компонентом воздуха.

Согласно исследованиям В. И. Бгатова, тогда же появился в качестве микропримеси и эндогенный кислород, возникший при дегазации базальтовых лав. Кислород возникал и в результате диссоциации молекул воды в верхних слоях атмосферы под действием ультрафиолетовых лучей. Однако весь кислород уходил на окисление минералов земной коры, и его не хватало на накопление в атмосфере. Более 3 млрд лет назад появились фотосинтезирующие синезеленые водоросли (цианобактерии), которые для синтеза органического вещества начали использовать световую энергию Солнца. В реакции фотосинтеза участвует углекислый газ, а выделяется свободный кислород. Вначале он расходовался на окисление железосодержащих элементов литосферы, но около 2 млрд лет назад этот процесс завершился, и свободный кислород начал накапливаться в атмосфере. Начался второй этап развития атмосферы – кислородный.

Сначала рост содержания кислорода в атмосфере был медленным: около 1 млрд лет назад оно достигло 1% от современного (точка Пастера), но этого оказалось достаточным для появления вторичных гетеротрофных организмов (животных), потребляющих кислород для дыхания. С появлением растительного покрова на континентах во второй половине палеозоя прирост кислорода в атмосфере ускорился, поскольку резко повысилась глобальная продуктивность фотосинтеза. Так, в середине палеозоя количество кислорода в атмосфере составляло только 10% от современного, а уже в карбоне кислорода было столько же, сколько и сейчас. Фотосинтетический кислород вызвал большие изменения и в атмосфере, и в живых организмах планеты. Содержание углекислого газа в процессе эволюции атмосферы существенно снизилось, так как значительная его часть вошла в состав углей и карбонатов.