22. Влажноадиабатические изменения температуры
С адиабатическим подъемом влажного ненасыщенного воздуха связано такое важное изменение, как приближение его к состоянию насыщения. Температура воздуха при его подъеме понижается; поэтому на какой-то высоте достигается насыщение. Эта высота называется уровнем конденсации.
При дальнейшем подъеме влажный насыщенный воздух охлаждается иначе, чем ненасыщенный. В нем происходит конденсация, а при конденсации выделяется в значительных количествах скрытая теплота парообразования, или теплота конденсации (около 600 кал на каждый грамм сконденсировавшейся воды). Выделение этой теплоты замедляет понижение температуры воздуха при подъеме. Поэтому в поднимающемся насыщенном воздухе температура падает уже не по уравнению Пуассона, а по влажноадиабатическому закону. Она падает тем медленнее, чем больше влагосодержание воздуха в состоянии насыщения (что в свою очередь зависит от температуры и давления). На каждые 100 м подъема насыщенный воздух при давлении 1000 мб и температуре 0° охлаждается на 0,66 , при температуре +20° — на 0,44° и при температуре —20° — на 0,88°. При более низком давлении падение температуры соответственно меньше. Падение температуры в насыщенном воздухе при подъеме его на единицу высоты (100 м) называют влажноадиабатическим градиентом Гs.
При очень низких температурах, которые получает воздух при подъеме в высокие слои атмосферы, водяного пара в нем остается немного и выделение теплоты конденсации поэтому также мало. Падение температуры при подъеме в таком воздухе приближается к падению в сухом воздухе. Иначе говоря, влажноадиабатический градиент при низких, температурах приближается по величине к сухоадиабатическому.
При опускании насыщенного воздуха процесс может происходить по-разному в зависимости от того, содержит ли воздух жидкие продукты конденсации (капельки и кристаллы), или они уже целиком выпали из воздуха в виде осадков.
Если в воздухе нет продуктов конденсации, то воздух, как только температура в нем начнет при опускании расти, сразу станет ненасыщенным. Поэтому воздух, опускаясь, будет нагреваться по сухоадиабатическому закону, т. е. на 1°/100 м. Если же в воздухе есть капельки и кристаллы, то они при опускании и нагревании воздуха будут постепенно испаряться. При этом часть тепла воздушной массы перейдет в скрытую теплоту парообразования, и потому повышение температуры при опускании замедлится. В результате воздух останется насыщенным до тех пор, пока все продукты конденсации не перейдут в газообразное состояние. А температура в нем будет в это время повышаться по влажноадиабатическому закону: не на 1°/100 м, а на меньшую величину — именно на такую, на какую понизилась бы температура в восходящем насыщенном воздухе при тех же значениях температуры и давления.
- Воздух и атмосфера
- 3. Упругость водяного пара и относительная влажность
- 4. Изменение состава воздуха с высотой
- 5. Распределение озона в атмосфере
- 6. Жидкие и твердые примеси к атмосферному воздуху
- 7. Дымка, облака, туманы
- 8. Ионы в атмосфере
- 9. Электрическое поле атмосферы
- 10. Уравнение состояния газов
- 11. Атмосферное давление
- 12. Температура воздуха
- 13. Плотность воздуха
- 14. Основное уравнение статики атмосферы
- 15. Применения барометрической формулы
- 16. Барическая ступень
- 17. Среднее распределение атмосферного давления с высотой
- 18. Общая масса атмосферы
- 19. Адиабатические изменения состояния в атмосфере
- 20. Сухоадиабатические изменения температуры
- 21. Сухоадиабатические изменения температуры при вертикальных движениях
- 22. Влажноадиабатические изменения температуры
- 23. Псевдоадиабатический процесс
- 24. Адиабатная диаграмма
- 25. Потенциальная температура
- 26. Вертикальное распределение температуры
- 28. Турбулентный обмен
- 30. Стратосфера и мезосфера
- 31. Ионосфера
- 32. Экзосфера
- 33. Воздушные массы и фронты