25. Потенциальная температура
Пусть на какой-то высоте в атмосфере имеется воздух с давлением р и температурой Т. Если бы этот воздух сухоадиабатически опустился на уровень, где существует стандартное давление р0, то температура его тоже изменилась бы по уравнению Пуассона. Новая температура была бы
Назовем эту температуру, которую воздух получил бы при стандартном давлении (1000 мб), его потенциальной температурой. Фактическую температуру воздуха, в отличие от потенциальной, будем называть молекулярной температурой. Очевидно, что потенциальная температура равна молекулярной температуре при стандартном давлении.
Потенциальную температуру можно с достаточным приближением определить, если известно, на какой высоте воздух находится. Пусть, например, эта высота равна 3000 м. Допустим, что на уровне моря давление стандартное, т. е. равно 1000 мб (в среднем оно близко к этой величине). Тогда потенциальная температура воздуха, т. е. температура, с которой он пришел бы на уровень моря, равна его начальной температуре плюс 30°, так как на каждые 100 м спуска температура воздуха должна возрастать на один градус. Таким образом, приближенно Θ = T+z, где z — число градусов, равное числу гектометров высоты.
С помощью потенциальной температуры можно сравнивать тепловое состояние масс воздуха, находящихся на разных высотах над уровнем моря, т. е. при разных давлениях. Вычисляя потенциальную температуру этих масс, мы как бы опускаем их на один уровень.
При изменении состояния воздуха по сухоадиабатическому закону потенциальная температура воздуха не меняется.
Пусть, например, воздух с температурой +10° С (283° К) находится на высоте 3000 м. Его потенциальная температура, согласно сказанному выше, будет приблизительно +40° С. Это понятно: опустившись на уровень моря с высоты 3000 м, воздух нагрелся бы на 30° и получил бы температуру +40°. Допустим теперь, что воздух сначала адиабатически поднялся с уровня 3000 м на уровень 3200 м. При этом его температура понизится на 2° и станет +8°. Но если теперь адиабатически опустить воздух на уровень моря, то он нагреется уже на 32° и, следовательно, придет на уровень моря с той же температурой +40°, которая и является его потенциальной температурой.
Только когда начинается конденсация и выделяется скрытая теплота, потенциальная температура возрастает.
Сухие адиабаты на адиабатной диаграмме являются изолиниями равной потенциальной температуры воздуха. В самом деле, при сухоадиабатическом изменении состояния точка на диаграмме, выражающая состояние воздуха, перемещается по одной и той же сухой адиабате. Следовательно, данная сухая адиабата характеризует определенную потенциальную температуру. Значение этой потенциальной температуры мы найдем на оси абсцисс для точки пересечения данной адиабаты с линией стандартного давления (1000 мб).
- Воздух и атмосфера
- 3. Упругость водяного пара и относительная влажность
- 4. Изменение состава воздуха с высотой
- 5. Распределение озона в атмосфере
- 6. Жидкие и твердые примеси к атмосферному воздуху
- 7. Дымка, облака, туманы
- 8. Ионы в атмосфере
- 9. Электрическое поле атмосферы
- 10. Уравнение состояния газов
- 11. Атмосферное давление
- 12. Температура воздуха
- 13. Плотность воздуха
- 14. Основное уравнение статики атмосферы
- 15. Применения барометрической формулы
- 16. Барическая ступень
- 17. Среднее распределение атмосферного давления с высотой
- 18. Общая масса атмосферы
- 19. Адиабатические изменения состояния в атмосфере
- 20. Сухоадиабатические изменения температуры
- 21. Сухоадиабатические изменения температуры при вертикальных движениях
- 22. Влажноадиабатические изменения температуры
- 23. Псевдоадиабатический процесс
- 24. Адиабатная диаграмма
- 25. Потенциальная температура
- 26. Вертикальное распределение температуры
- 28. Турбулентный обмен
- 30. Стратосфера и мезосфера
- 31. Ионосфера
- 32. Экзосфера
- 33. Воздушные массы и фронты