5.2 Плотность воды
Плотность — главнейшая физическая характеристика любого вещества. Она представляет собой массу однородного вещества, приходящуюся на единицу его объема:
р = m/V,
где m — масса, V — объем. Плотность р имеет размерность кг/м3.
Плотность воды, как и других веществ, зависит прежде всего от температуры и давления (а для природных вод — еще и от содержания растворенных и тонкодисперсных взвешенных веществ) и скачкообразно изменяется при фазовых переходах.. При повышении температуры плотность воды, как и любого другого вещества, в большей части диапазона изменения температуры уменьшается, что связано с увеличением расстояния между молекулами при росте температуры. Эта закономерность нарушается лишь при плавлении льда и при нагревании воды в диапазоне от 0 до 4° (точнее 3,98° С). Здесь отмечаются еще две очень важные «анатомии» воды: 1) плотность воды в твердом состоянии (лед) меньше, чем в жидком (вода), чего нет у подавляющего большинства других веществ; 2) в диапазоне температуры воды от 0 до 4° С плотность воды с повышением температуры не уменьшается, а увеличивается. Особенности изменения плотности воды связаны с перестройкой молекулярной структуры воды. Эти две «аномалии» воды имеют огромное гидрологическое значение: лед легче воды и поэтому «плавает» на ее поверхности; водоемы обычно не промерзают до дна, так как охлажденная до температуры ниже 4° пресная вода становится менее плотной и поэтому остается в поверхностном слое.
Плотность льда зависит от его структуры и температуры. Пористый лед может иметь плотность, намного меньшую, чем указано в таблице1.1. Еще меньше плотность снега. Свежевыпавший снег имеет плотность 80—140 кг/м3 ,плотность слежавшегося снега постепенно увеличивается от 140—300 (до начала таяния) до 240—350 (в начале таяния) и 300—450 кг/м3 (в конце таяния). Плотный мокрый снег может иметь плотность до 600—700 кг/м3. Снежинки во время таяния имеют плотность 400—600, лавинный снег 500—650 кг/м3. Слой воды, образующийся при таянии льда и снега, зависит от толщины слоя льда или снега и их плотности. Запас воды в льде или в снеге равен:
hв = ahлрл/р
где hл — толщина слоя льда или снега, рл — их плотность, р — плотность воды, а — множитель, определяемый соотношением размерностей hв и hл: если слой воды выражается в мм, а толщина льда (снега) в см, то а=10, при одинаковой размерности а=1.
Плотность воды изменяется также в зависимости от содержания в ней растворенных веществ и увеличивается с ростом солености (рис. 1.5). Плотность морской воды при нормальном давлении может достигать 1025—1033 кг/м3.
Совместное влияние температуры и солености на плотность воды при атмосферном давлении выражают с помощью так называемого уравнения состояния морской воды. Такое уравнение в самом простом линейном виде записывают следующим образом:
р = ро(1 — α1Т + α2S)
где Т — температура воды, °С, S — соленость воды, ‰, ро — плотность воды при Т = 0 и S = 0, α1 и α2 — параметры.
Увеличение солености приводит также к понижению температуры наибольшей плотности (°С) согласно формуле
Тнаиб.пл = 4 - 0,215 S.
Рис. 5.2.1. Зависимость плотности воды при нормальном атмосферном давлении от температуры и солености воды.
Увеличение солености на каждые 10‰ снижает Тнаиб.пл приблизительно на 2° С. Зависимость температуры наибольшей плотности и температуры замерзания от солености воды иллюстрирует так называемый график Хелланд-Хансена (см. рис. 3.10.1.).
Соотношения между температурами наибольшей плотности и замерзания влияют на характер процесса охлаждения воды и вертикальной конвекции — перемешивания, обусловленного различиями в плотности. Охлаждение воды в результате теплообмена с воздухом приводит к увеличению плотности воды и, соответственно, к опусканию более плотной воды вниз. На ее место поднимаются более теплые и менее плотные воды. Происходит процесс вертикальной плотностной конвекции. Однако для пресных и солоноватых вод, имеющих соленость менее 24,7‰, такой процесс продолжается лишь до момента достижения водой температуры наибольшей плотности (см. рис. 1.4). Дальнейшее охлаждение воды ведет к уменьшению ее плотности, и вертикальная конвекция прекращается. Соленые воды при S>24,7‰ подвержены вертикальной конвекции вплоть до момента их замерзания.
Таким образом, в пресных или солоноватых водах зимой в придонных горизонтах температура воды оказывается выше, чем на поверхности, и, согласно графику Хелланд-Хансена, всегда выше температуры замерзания. Это обстоятельство имеет огромное значение для сохранения жизни в водоемах на глубинах. Если бы у воды температуры наибольшей плотности и замерзания совпадали бы, как у всех других жидкостей, то водоемы могли промерзать до дна, вызывая неизбежную гибель большинства организмов.
«Аномальное» изменение плотности воды при изменении температуры влечет за собой такое же «аномальное» изменение объема воды: с возрастанием температуры от 0 до 4° С объем химически чистой воды уменьшается, и лишь при дальнейшем повышении температуры — увеличивается; объем льда всегда заметно больше объема той же массы воды (вспомним, как лопаются трубы при замерзании воды).
Изменение объема воды при изменении ее температуры может быть выражено формулой
VT1 = VT2(1 + β T)
где VT1 — объем воды при температуре Т1, VT2 — объем воды при T2, β — коэффициент объемного расширения, принимающий отрицательные значения при температуре от 0 до 4° С и положительные при температуре воды больше 4° С и меньше 0° С (лед) (см. табл. 1.1),
T =T2 -T1.
Некоторое влияние на плотность воды оказывает также и давление. Сжимаемость воды очень мала, но она на больших глубинах в океане все же сказывается на плотности воды. На каждые 1000 м глубины плотность вследствие влияния давления столба воды возрастает на 4,5—4,9 кг/м3. Поэтому на максимальных океанских глубинах (около 11 км) плотность воды будет приблизительно на 48 кг/м3 больше, чем на поверхности, и при S = 35‰ составит около 1076 кг/м3. Если бы вода была совершенно несжимаемой, уровень Мирового океана был бы на 30 м выше, чем в действительности. Малая сжимаемость воды позволяет существенно упростить гидродинамический анализ движения природных вод .
Влияние мелких взвешенных наносов на физические характеристики воды и, в частности, на ее плотность изучено еще недостаточно. Считают, что на плотность воды могут оказывать влияние лишь очень мелкие взвеси при их исключительно большой концентрации, когда воду и наносы уже нельзя рассматривать изолированно. Так, некоторые виды селей, содержащие лишь 20—30% воды, представляют собой по существу глинистый раствор с повышенной плотностью. Другим примером влияния мелких наносов на плотность могут служить воды Хуанхэ, втекающие в залив Желтого моря. При очень большом содержании мелких наносов (до 220 кг/м3) речные мутные воды имеют плотность на 2—2,5 кг/м3 больше, чем морские воды (их плотность при фактической солености и температуре около 1018 кг/м3). Поэтому они «ныряют» на глубину и опускаются по морскому дну, формируя «плотный», или «мутьевой», поток.
- Томский государственный университет систем
- 1.1. Международная программа охраны вод
- 1.2. Гидрология и ее связь с другими науками
- 1.3. Методы изучения водных объектов
- 1.4. Из истории гидрологии
- 1.5. Исследование вод в России
- 2.1 Водный фонд рф и право пользования водными объектами
- 2.2. Государственный мониторинг водных объектов
- 2.3. Водопользование
- 2.4. Права водопользователя
- 2.5. Обязанности водопользователя
- 3.1 Молекула воды.
- 3.2. Химические свойства воды
- 3.3. Формирование химического состава природных вод
- 3.4 Классификация вод по химическому составу
- 4.1 Минерализация воды
- 4.2 Важнейшие показатели воды
- 4.3 Растворенные газы
- 4.4 Главные ионы
- 4.5 Биогенные компоненты
- 4.6 Органическое вещество
- Контрольные вопросы:
- 5.2 Плотность воды
- 5.3 Тепловые свойства воды.
- 5.4 Вязкость воды (внутреннее трение).
- 5.5 Поверхностное натяжение и смачивание.
- 5.6 Оптические свойства воды.
- 5.7 Акустические свойства воды.
- 5.8 Электропроводность воды.
- Контрольные вопросы:
- 6.1 Органолептические наблюдения
- 6.2 Запах, мутность, цветность и прозрачность
- 6.3 Нормирование и качество воды
- 6.4 Пдк некоторых веществ в питьевой воде
- 6.5 Основные методы очистки воды
- 6.5.1 Удаление кислорода из воды.
- 6.5.3. Ионный обмен.
- 6.5.4. Катионирование воды.
- 6.5.5. Анионироваиие воды.
- 6.5.6. Химическое обессоливание воды.
- 7.1. Общие понятия круговорота воды
- 7.2. Интенсивность влагооборота
- 7. 3 Типы влагооборота
- 7.3.1. Геокосмический влагооборот
- 7.3.2.Атмосферно-океанический влагооборот
- 7.3.4. Атмосферио-литосферно-биологический
- 7.4. Водные ресурсы
- 7.5 Движение воды в водных объектах
- 7.6 Понятие о водном балансе
- 7.7 Водный баланс земного шара
- 7.8. Пресные воды
- 7.9. Мировой водный баланс
- 7.10. Активность водообмена
- 7.11 Тепловой баланс водных объектов
- 8.1 Виды ледников
- 8.3 Ледниковые трещины
- 8.7 Характеристики современных ледников
- 8.8 Современное оледенение на территории России
- 8.9 Ледниковое влияние на жизнь.
- 9.1 Классификация морских льдов
- 9.2 Условия образования и существования морских льдов
- 9.3 Ледниковый период и морские льды
- 9.4 Структура и свойства морского льда
- 10.1 Водно-физические свойства горных пород и почв
- 10.3 Поле сил в порах
- 10.4 Виды воды в порах
- 10.5 Возникновение и распространение подземных вод
- 10.6 Грунтовые и межпластовые напорные воды
- 10.7 Движение подземных вод
- 10.8 Передвижение воды в водоносных горизонтах
- 10.9 Формула Дарси
- 10.10 Режим подземных и поверхностных вод
- 10.11 Режим грунтовых и межпластовых вод
- 11.1 Основные понятия
- 11.2 Классификация Хортона
- 11.3 Морфологические характеристики бассейна
- Лекция 12 Речной сток и его составляющие
- 12.1 Водный баланс бассейна реки
- 12.2 Питание рек
- 12.3 Русловые процессы
- 13.1 Классификация озер
- 13.2 Элементы озерного ложа:
- 13.3 Морфометрические характеристики озера.
- Лекция 14. Водный баланс озер
- 14.1 Термический режим озер
- 14.2 Химический состав озерной воды
- 14.3 Биологические процессы озер
- 14.4 Озерные отложения
- Контрольные вопросы:
- 15.1 История создания водохранилищ
- 15.2 Размещение водохранилищ на земном шаре
- 15.3 Классификация по морфологии ложа
- 15.4 Классификация по способу заполнения водой
- 15.5 Классификация по географическому положению
- 15.6 Классификация по характеру регулирования стока
- 15.7 Водный баланс
- 15.8 Колебания уровня воды
- 15.9 Течения
- 15.10 Волны
- 15.11 Ледовый режим водохранилищ
- 15.12 Гидрохимические особенности
- 15.13 Гидробиологические особенности
- 15.14 Заиление водохранилищ
- 15.15 Формирование берегов
- 15.16 Роль водохранилищ для человека
- 15.17 Особенности водного баланса водохранилищ
- Контрольные вопросы:
- 16.1 Происхождение болот
- 16.2 Строение болот
- 16.3 Классификация болот
- 16.4 Функции болот
- 16.5 Болотная гидрографическая сеть
- 16.6 Гидрологический режим и водный баланс болот
- 16.7 Влияние осушительных мероприятий
- 16.8 Движение воды в торфяном грунте
- 16.9 Водный баланс болот
- 17.1 Геологические аспекты
- 17.2 Геоморфология
- 17.3 Гидрогеологические и гидрологические условия
- 17.4 Режим промерзания болота.
- 17.5 Рациональное использование Васюганского болота
- Контрольные вопросы:
- 18.1 Основные элементы рельефа:
- 18.2 Водный баланс морей и океанов
- 18.4 Полезные ископаемые
- 18.7 Уязвимые звенья экологической системы Мирового Океана.
- 18.8 Антропогенное воздействие на океан
- 18.9 Нефть и нефтепродукты.
- 18.10Тепловое загрязнение водных ресурсов.
- 18.11 Радиоактивное загрязнение и ядовитые вещества
- 18.12 Минеральное, органическое, бактериальное и биологическое загрязнения Мирового океана.
- 18.13 Синтетические поверхностно-активные вещества.
- 18.14 Пестициды.
- 18.15 Водоросли.
- 18.16 Тяжелые металлы.
- 18.17 Самоочищение океана.
- 18.18 Меры борьбы с загрязнением.